API Reference#
- class jaxlogit.mixed_logit.MixedLogit#
Class for estimation of Mixed Logit Models.
- fit(X, y, varnames, alts, ids, randvars, config: ConfigData, verbose=1)#
Fit Mixed Logit models.
Parameters#
- Xarray-like, shape (n_samples*n_alts, n_variables)
Input data for explanatory variables in long format.
- yarray-like, shape (n_samples*n_alts,)
Chosen alternatives or one-hot encoded representation of the choices.
- varnameslist-like, shape (n_variables,)
Names of explanatory variables that must match the number and order of columns in
X.- altsarray-like, shape (n_samples*n_alts,)
Alternative values in long format.
- idsarray-like, shape (n_samples*n_alts,)
Identifiers for the samples in long format.
- randvarsdict
Names (keys) and mixing distributions (values) of variables that have random parameters as coefficients. Possible mixing distributions are:
'n': normal'ln': lognormal't': triangular'n_trunc': truncated normal
- verboseint, default=1
Verbosity of messages to show during estimation.
0: No messages
1: Some messages
2: All messages
Returns#
- result
The estimated model parameters result.
|
Configurations for the fit and predict functions with default values. |
|
Reshapes pandas DataFrame from wide to long format. |